03.09.2021
Radialschweißen mit System

Einsatz von LPKF-Lasertechnologie für optimale Verbindung zylindrischer Kunststoff-Bauteile

Die Form von Bauteilen spielt eine wichtige Rolle im Produktionsprozess. Das Fügen von Kunststoff-Teilen mit rotationssymmetrischen bzw. zylindrischen Geometrien birgt einige Herausforderungen, die LPKF mit einem spezialisierten Lasersystem meistert. Die neue Generation der LPKF InlineWeld 2000 sorgt für eine feste Verbindung zylindrisch-runder oder -ovaler Teile. Das System wurde für automatisierte Fertigungslinien entwickelt, kann aber auch als eigenständige Anlage in der Produktions- oder Laborumgebung betrieben werden.

Die LPKF InlineWeld 2000 arbeitet im Radialschweißverfahren. Das System besteht aus einem Schweißkopf mit einer leistungsstarken Laserquelle und einem Dreharm. In einer schnellen Rotationsbewegung lenkt der Arm den Laserstrahl um das Bauteil herum. Der Laserstrahl erzeugt dabei selektiv entlang der zu schweißenden Verbindung eine exakte und zuverlässige Schweißnaht. Das Bauteil selbst ist während des Schweißprozesses in einer festen Position.

Die Füge-Ergebnisse erfüllen in punkto Funktion, Leistung und Optik dabei höchste Anforderungen. Durch den Fügeprozess wird das die Schweißkontur umgebende Material wird nicht beeinflusst; es bleibt hygienisch sauber und partikelfrei. Lasergeschweißte Komponenten kommen daher besonders in der Automobilindustrie und der Medizintechnik, aber auch in quasi jeder anderen Branche zum Einsatz: SCR-Leitungen, Komponenten für das Thermomanagement, medizintechnische Teile wie Diabetessensoren oder Schlauch- und Ventilsysteme sind einige Beispiele hierfür.

LPKF hat die neue InlineWeld 2000 als Mitglied der InlineWeld-Familie speziell für die variantenreiche Kundenbedürfnisse in Bezug auf Bauteilabmessungen und Design entwickelt. Ein hohes Maß an Flexibilität liefert der durchdachte modulare Aufbau des Systems. Dank eines neuen Justagekonzepts und der einfachen Austauschbarkeit der Komponenten können unterschiedlichste Durchmesser und Schweißnähte mit dem gleichen System bei sehr geringen Rüstzeiten verarbeitet werden: Zylindrische Bauteile, ovale Bauteile oder auch Bauteile mit spezifischen Geometrien lassen sich mit dieser Technologie gleichermaßen fügen.

Je nach vorgesehener Schweißnahtgeometrie kann es notwendig sein, einen Spanndruck auf das Bauteil auszuüben. Die LPKF InlineWeld 2000 bietet hierfür verschiedenen Optionen. Bei einer Presspassung der Bauteile ist kein Druckeintrag erforderlich. Konische Designs oder Verbindungen mit Steg erfordern die Anwendung eines Drucks. Das Lasersystem ist in der Lage, einen sehr breiten Spannkraftbereich abzudecken, der für nahezu jede Schweißaufgabe zu optimalen Ergebnissen führt. Über die Systemsoftware lassen sich dabei die Parameter einfach auslegen und Änderungen der Parameter schnell durchführen.

Die Qualität des radialen Schweißprozesses wird inline durch eine integrierte Pyrometerregelung sichergestellt. Auch bei hohem Produktionsdurchsatz wird so eine reproduzierbare Teilequalität garantiert. Durch die hohe Prozessgeschwindigkeit und die Qualität der jeweiligen Fügeverbindungen ist die LPKF InlineWeld 2000 eine ökonomische Lösung für das Fügen von Kunststoffteilen der genannten Bauformen.

LPKF wird auf der KUTENO vom 7. bis 9. September 2021 in Rheda-Wiedenbrück vor Ort sein. Der LPKF-Stand befindet sich in Halle 2, Standnummer E4.

Abb. 1: Das Radialschweißsystem LPKF InlineWeld 2000 realisiert verlässliche Verbindungen rotationssymmetrischer Bauteile
Abb. 2: Bauteile wie diese Getränkebehälter lassen sich mit dem Laser im Radial-schweißsystem LPKF InlineWeld 2000 sicher schweißen
Presseinformation
Radialschweißen mit System (pdf- 175 KB)
Download
Abbildung 1
LPKF InlineWeld 2000 (jpg- 587 KB)
Download
Abbildung 2
Lasergeschweißte Getränke-Zylinder (jpg- 268 KB)
Download

Attachments

  • Original document
  • Permalink

Disclaimer

LPKF - Laser & Electronics AG published this content on 03 September 2021 and is solely responsible for the information contained therein. Distributed by Public, unedited and unaltered, on 03 September 2021 13:01:07 UTC.